Точечные и вероятностные стохастические модели. Теоретико-вероятностные (стохастические) модели и методы исследований

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Пример построения стохастической модели процесса

В процессе функционирования банка очень часто возникает необходимость в решении проблемы выбора вектора активов, т.е. инвестиционного портфеля банка, и неопределенные параметры, которые необходимо учитывать в этой задаче, связаны в первую очередь с неопределенностью цен на активы (ценные бумаги, реальные вложения и т.д.). В качестве иллюстрации можно привести пример с формированием портфеля государственных краткосрочных обязательств.

Для задач данного класса принципиальный вопрос - это построение модели стохастического процесса изменения цен, поскольку в распоряжении исследователя операции, естественно, имеется только конечный ряд наблюдений реализаций случайных величин - цен. Далее излагается один из подходов к решению этой проблемы, который развивается в ВЦ РАН в связи с решением задач управления стохастическими марковскими процессами.

Рассматриваются М видов ценных бумаг, i =1,… , M , которые торгуются на специальных биржевых сессиях. Бумаги характеризуются величинами - выраженными в процентах доходностями в течение текущей сессии. Если бумага вида в конце сессии покупается по цене и продается в конце сессии по цене, то.

Доходности - это случайные величины, формирующиеся следующим образом. Предполагается существование базовых доходностей - случайных величин, образующих марковский процесс и определяемых по следующей формуле:

Здесь, - константы, а - стандартные нормально распределенные случайные величины (т.е. с нулевым математическим ожиданием и единичной дисперсией).

где - некоторый масштабный коэффициент равный (), а - случайная величина, имеющая смысл отклонения от базового значения и определяемая аналогично:

где - также, стандартные нормально распределенные случайные величины.

Предполагается, что некоторая оперирующая сторона, называемая в дальнейшем оператором, в течение некоторого времени управляет своим капиталом, вложенным в бумаги (во всякий момент в бумагу ровно одного вида), продавая их в конце текущей сессии и тут же покупая на вырученные деньги другие бумаги. Управление, выбор приобретаемых бумаг, производится по алгоритму, зависящему от информированности оператора о процессе, формирующем доходности бумаг. Нами будут рассматриваться различные гипотезы об этой информированности и, соответственно, различные алгоритмы управления. Будем предполагать, что исследователь операции, разрабатывает и оптимизирует алгоритм управления, используя имеющийся ряд наблюдений за процессом, т.е., используя информацию о ценах закрытия на биржевых сессиях, а также, возможно, и о величинах, на некотором промежутке времени, соответствующем сессиям с номерами. Целью экспериментов является сравнение оценок ожидаемой эффективности различных алгоритмов управления с их теоретическим математическим ожиданием в условиях, когда алгоритмы настраиваются и оцениваются на одном и том же ряду наблюдений. Для оценки теоретического математического ожидания используется метод Монте-Карло «прогонкой» управления по достаточно объемному сгенерированному ряду, т.е. по матрице размерности, где столбцы соответствуют реализациям значений и по сессиям, а число определяется вычислительными возможностями, но при условии, чтобы элементов матрицы было не менее 10000. Необходимо, чтобы «полигон» был одним и тем же во всех проводимых экспериментах. Имеющийся ряд наблюдений имитирует сгенерированная матрица размерности, где значения в ячейках имеют тот же смысл, что и выше. Число и значения в этой матрице будут в дальнейшем варьироваться. Матрицы обоих видов формируются посредством процедуры генерации случайных чисел, имитирующей реализацию случайных величин, и расчета по этим реализациям и формулам (1) - (3) искомых элементов матриц.

Оценка эффективности управления на ряду наблюдений производится по формуле

где - индекс последней сессии в ряду наблюдений, а - номер облигаций, выбранных алгоритмом на шаге, т.е. того вида облигаций, в которых, согласно алгоритму, будет находиться капитал оператора в течение сессии. Кроме того, будем рассчитывать также месячную эффективность. Число 22 приблизительно соответствует числу торговых сессий за месяц.

Вычислительные эксперименты и анализ результатов

Гипотезы

Точное знание оператором будущих доходностей.

Индекс выбирается как. Этот вариант дает верхнюю оценку для всех возможных алгоритмов управления, даже в случае, если дополнительная информация (учет каких-то дополнительных факторов) позволит уточнить модель прогноза цен.

Случайное управление.

Оператор не знает закона ценообразования и проводит операции случайным выбором. Теоретически, в данной модели математическое ожидание результата операций совпадает с тем, как если бы оператор вкладывал капитал не в одну бумагу, а во все поровну. При нулевых математических ожиданиях величин математическое ожидание величины равно 1. Расчеты по данной гипотезе полезны только в том смысле, что позволяют в некоторой степени проконтролировать корректность написанных программ и сгенерированной матрицы значений.

Управление при точном знании модели доходностей, всех ее параметров и наблюдаемой величины .

В этом случае оператор в конце сессии, зная значения и для сессий, и, а в наших расчетах, используя строки, и, матрицы, вычисляет по формулам (1) - (3) математические ожидания величин и выбирает для покупки бумагу с наибольшей из этих значений величин.

где, согласно (2), . (6)

Управление при знании структуры модели доходностей и наблюдаемой величине , но неизвестных коэффициентах .

Будем предполагать, что исследователь операции не только не знает значения коэффициентов, но не знает и число влияющих на формирование величин, предшествующих значений этих параметров (глубину памяти марковских процессов). Не знает также, одинаковы или различны коэффициенты при разных значениях. Рассмотрим различные варианты действий исследователя - 4.1, 4.2, и 4.3, где второй индекс обозначает предположение исследователя о глубине памяти процессов (одинаковой для и). К примеру, в случае 4.3 исследователь предполагает, что формируется согласно уравнению

Здесь, для полноты описания, добавлен свободный член. Однако, этот член может быть исключен либо из содержательных соображений, либо статистическими методами. Поэтому для упрощения расчетов мы в дальнейшем свободные члены при настройке параметров из рассмотрения исключаем и формула (7) приобретает вид:

В зависимости от того, предполагает ли исследователь одинаковыми или различными коэффициенты при разных значениях, будем рассматривать подслучаи 4.m. 1 - 4.m. 2, m = 1 - 3. В случаях 4.m. 1 коэффициенты будут настраиваться по наблюденным значениям для всех бумаг вместе. В случаях 4.m. 2 коэффициенты настраиваются для каждой бумаги отдельно, при этом исследователь работает в рамках гипотезы, что коэффициенты, различны при разных и, к примеру, в случае 4.2.2. значения определяются модифицированной формулой (3)

Первый способ настройки - классический метод наименьших квадратов. Рассмотрим его на примере настройки коэффициентов при в вариантах 4.3.

Согласно формуле (8),

Требуется найти такие значения коэффициентов, чтобы минимизировать выборочную дисперсию для реализаций на известном ряду наблюдений, массиве при условии, что математическое ожидание значений определяется формулой (9).

Здесь и в дальнейшем знак «» указывает на реализацию случайной величины.

Минимум квадратичной формы (10) достигается в единственной точке, в которой все частные производные равны нулю. Отсюда получаем систему трех алгебраических линейных уравнений:

решение которой дает искомые значения коэффициентов.

После того как коэффициенты верифицированы, выбор управлений проводится так же, как и в случае 3.

Замечание. Для того, чтобы облегчить работу над программами, принято процедуру выбора управления, описанную для гипотезы 3, сразу писать, ориентируясь не на формулу (5), а на ее модифицированный вариант в виде

При этом в расчетах для случаев 4.1.m и 4.2.m, m = 1, 2, лишние коэффициенты обнуляются.

Второй способ настройки состоит в выборе значений параметров так, чтобы максимизировать оценку из формулы (4). Задача эта аналитически и вычислительно безнадежно сложна. Поэтому здесь можно говорить только о приемах некоторого улучшения значения критерия относительно исходной точки. За исходную точку можно взять значения, полученные методом наименьших квадратов, и затем произвести обсчет вокруг этих значений по сетке. При этом последовательность действий такова. Сначала обсчитывается сетка на параметрах (квадрат или куб) при фиксированных остальных параметрах. Затем для случаев 4.m. 1 обсчитывается сетка на параметрах, а для случаев 4.m. 2 на параметрах при фиксированных остальных параметрах. В случае 4.m. 2 далее так же оптимизируются параметры. Когда этим процессом исчерпываются все параметры, процесс повторяется. Повторения производятся до тех пор, пока новый цикл дает улучшение значений критерия по сравнению с предыдущим. Чтобы число итераций не оказалось слишком большим, применим следующий прием. Внутри каждого блока расчетов на 2-х или 3-х-мерном пространстве параметров сначала берется достаточно грубая сетка, затем, если лучшая точка оказывается на краю сетки, то исследуемый квадрат (куб) сдвигается и расчет повторяется, если же лучшая точка внутренняя, то строится новая сетка вокруг этой точки с меньшим шагом, но с тем же общим числом точек, и так некоторое, но разумное число раз.

Управление при ненаблюдаемом и без учета зависимости между доходностями разных бумаг.

Имеется в виду, что исследователь операции не замечает зависимости между разными бумаги, ничего не знает о существовании и пытается прогнозировать поведение каждой бумаги по отдельности. Рассмотрим, как обычно, три случая, когда исследователь моделирует процесс формирования доходностей в виде марковского процесса глубиной 1, 2, и 3:

Коэффициенты для прогноза ожидаемой доходности не важны, а коэффициенты настраиваются двумя способами, описанными в п. 4. Управления выбираются, аналогично тому, как это делалось выше.

Замечание: Так же, как и для выбора управления, для метода наименьших квадратов имеет смысл написать единую процедуру с максимальным числом переменных - 3. Если настраиваемые переменные, скажем, то для из решения линейной системы выписывается формула, в которую входят только константы, определяется через, а через и. В случаях, когда переменных меньше чем три, значения лишних переменных обнуляются.

Хотя расчеты в различных вариантах проводятся сходным образом, число вариантов довольно велико. Когда подготовка инструментов для расчетов во всех перечисленных вариантах оказывается затруднительным, рассматривается на экспертном уровне вопрос о сокращении их числа.

Управление при ненаблюдаемом с учетом зависимости между доходностями разных бумаг.

Это серия экспериментов имитирует те манипуляции, которые были произведены в задаче с ГКО . Мы предполагаем, что исследователь практически ничего не знает о механизме формирования доходностей. Он располагает только рядом наблюдений, матрицей. Из содержательных соображений он делает предположение о взаимозависимости текущих доходностей разных бумаг, группирующихся около некоторой базовой доходности, определяемой состоянием рынка в целом. Рассматривая графики доходностей бумаг от сессии к сессии, он делает предположение, что в каждый момент времени точки, координатами которых являются номера бумаг и доходности (в реальности это были сроки до погашения бумаг и их цены), группируются возле некоторой кривой (в случае с ГКО - параболы).

Здесь - точка пересечения теоретической прямой с осью ординат (базовая доходность), а - ее наклон (то, что должно быть равным 0.05).

Построив таким образом теоретические прямые, исследователь операции может рассчитать значения - отклонения величин от их теоретических значений.

(Заметим, что здесь имеют несколько иной смысл, чем в формуле (2). Отсутствует размерный коэффициент, и рассматриваются отклонения не от базового значения, а от теоретической прямой.)

Следующей задачей является прогноз значений по известным в момент значениям, . Поскольку

для прогноза значений исследователю требуется ввести гипотезу о формировании величин, и. По матрице исследователь может установить значительную корреляцию между величинами и. Можно принять гипотезу о линейной зависимости между величинами от: . Из содержательных соображений коэффициент сразу полагается равным нулю, и методом наименьших квадратов ищется в виде:

Далее, как и выше и моделируются посредством марковского процесса и описываются формулами, аналогичными (1) и (3) с разным числом переменных в зависимости от глубины памяти марковского процесса в рассматриваемом варианте. (здесь определяется не по формуле (2), а по формуле (16))

Наконец, как и выше реализуются два способа настройки параметров методом наименьших квадратов, и посредством непосредственной максимизации критерия и делаются оценки.

Эксперименты

Для всех описанных вариантов рассчитывались оценки критериев, при разных матрицах. (матрицы с числом строк 1003, 503, 103 и для каждого варианта размерности реализовывались порядка ста матриц). По результатам расчетов для каждой размерности оценивались математическое ожидание и дисперсия величин, и их отклонение от величин, для каждого из подготовленных вариантов.

Как показали первые серии вычислительных экспериментов при малом числе настраиваемых параметров (порядка 4), выбор метода настройки не оказывает существенного влияния на значение критерия в задаче.

2. Классификация средств моделирования

стохастический моделирование банк алгоритм

Классификация методов моделирования и моделей может проводиться по степени подробности моделей, по характеру признаков, по сфере приложения и т.д.

Рассмотрим одну из распространенных классификаций моделей по средствам моделирования, именно этот аспект является наиболее важным при анализе различных явлений и систем.

материальным в том случае, когда исследование ведется на моделях, связь которых с исследуемым объектом существует объективно, имеет материальный характер. Модели в этом случае строятся исследователем либо выбирается им из окружающего мира.

По средствам моделирования методы моделирования делятся на две группы: методы материального и методы идеального моделирования Моделирование называется материальным в том случае, когда исследование ведется на моделях, связь которых с исследуемым объектом существует объективно, имеет материальный характер. Модели в этом случае строятся исследователем либо выбирается им из окружающего мира. В свою очередь в материальном моделировании можно выделить: пространственное, физическое и аналоговое моделирование.

В пространственном моделировании используются модели, предназначенные для того, чтобы воспроизвести или отобразить пространственные свойства изучаемого объекта. Модели в этом случае геометрически подобны объектам исследования (любые макеты).

Модели, используемые в физическом моделировании предназначены для воспроизводства динамики процессов, происходящих в изучаемом объекте. Причем общность процессов в объекте исследования и модели основана на сходстве их физической природы. Этот метод моделирования широко распространен в технике при проектировании технических систем различного вида. Например, исследование летательных аппаратов на основе экспериментов в аэродинамической трубе.

Аналоговое моделирование связано с использованием материальных моделей, имеющих другую физическую природу, но описывающихся теми же математическими соотношениями, что и изучаемый объект. Оно основано на аналогии в математическом описании модели и объекта (изучение механических колебаний с помощью электрической системы, описываемой теми же дифференциальными уравнениями, но более удобной в проведении экспериментов).

Во всех случаях материального моделирования модель-это материальное отражение исходного объекта, а исследование состоит в материальном воздействии на модель, то есть в эксперименте с моделью. Материальное моделирование по своей природе является экспериментальным методом и в экономических исследованиях не используется.

От материального моделирования принципиально отличается идеальное моделирование , основанное на идеальной, мыслимой связи между объектом и моделью. Методы идеального моделирования широко используются в экономических исследованиях. Их условно можно разделить на две группы: формализованное и неформализованное.

В формализованном моделировании моделью служат системы знаков или образов, вместе с которыми задаются правила их преобразования и интерпретации. Если в качестве моделей используются системы знаков, то моделирование называется знаковым (чертежи, графики, схемы, формулы).

Важным видом знаковой моделирования является математическое моделирование , основанное на том факте, что различные изучаемые объекты и явления могут иметь одинаковое математическое описание в виде совокупности формул, уравнений, преобразование которых осуществляется на основе правил логики и математики.

Другой формой формализованного моделирования является образное, в котором модели строятся на наглядных элементах (упругие шары, потоки жидкости, траектории движения тел). Анализ образных моделей осуществляется мысленно, поэтому они могут быть отнесены к формализованному моделированию, когда правила взаимодействия объектов, используемых в модели четко фиксированы (например, в идеальном газе столкновение двух молекул рассматривается, как соударение шаров, причем результат соударения мыслится всеми одинаково). Модели такого типа широко используются в физике, их принято называть «мысленными экспериментами».

Неформализованное моделирование. К нему можно отнести такой анализ проблем разнообразного типа, когда модель не формируется, а вместо нее используется некоторое точно не зафиксированное мысленное отображение реальной действительности, служащее основой для рассуждения и принятия решения. Таким образом, всякое рассуждение не использующее формальную модель можно считать неформализованным моделированием, когда у мыслящего индивидуума имеется некоторый образ объекта исследования, который можно интерпретировать как неформализованную модель реальности.

Исследование экономических объектов в течение долгого времени проводилось только на основе таких неопределенных представлений. В настоящее время анализ неформализованных моделей остается наиболее распространенным средством экономического моделирования, а именно всякий человек, принимающий экономическое решение без использования математических моделей вынужден руководствоваться тем или иным описанием ситуации, основанной на опыте и интуиции.

Основным недостатком этого подхода является то, что решения может оказаться мало эффективным или ошибочным. Еще долгое время, по-видимому, эти методы останутся основным средством принятия решений не только в большинстве обыденных ситуаций, но и при принятий решений в экономике.

Размещено на Allbest.ru

...

Подобные документы

    Принципы и этапы построения модели авторегрессии, ее основные достоинства. Спектр процесса авторегрессии, формула для ее нахождения. Параметры, характеризующие спектральную оценку случайного процесса. Характеристическое уравнение модели авторегрессии.

    контрольная работа , добавлен 10.11.2010

    Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.

    реферат , добавлен 11.02.2011

    Исследование особенностей разработки и построения модели социально-экономической системы. Характеристика основных этапов процесса имитации. Экспериментирование с использованием имитационной модели. Организационные аспекты имитационного моделирования.

    реферат , добавлен 15.06.2015

    Понятие имитационного моделирования, применение его в экономике. Этапы процесса построения математической модели сложной системы, критерии ее адекватности. Дискретно-событийное моделирование. Метод Монте-Карло - разновидность имитационного моделирования.

    контрольная работа , добавлен 23.12.2013

    Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.

    контрольная работа , добавлен 17.10.2014

    Этапы построения деревьев решений: правило разбиения, остановки и отсечения. Постановка задачи многошагового стохастического выбора в предметной области. Оценка вероятности реализации успешной и неуспешной деятельности в задаче, ее оптимальный путь.

    реферат , добавлен 23.05.2015

    Определение, цели и задачи эконометрики. Этапы построения модели. Типы данных при моделировании экономических процессов. Примеры, формы и моделей. Эндогенные и экзогенные переменные. Построение спецификации неоклассической производственной функции.

    презентация , добавлен 18.03.2014

    Основной тезис формализации. Моделирование динамических процессов и имитационное моделирование сложных биологических, технических, социальных систем. Анализ моделирования объекта и выделение всех его известных свойств. Выбор формы представления модели.

    реферат , добавлен 09.09.2010

    Основные этапы математического моделирования, классификация моделей. Моделирование экономических процессов, основные этапы их исследования. Системные предпосылки формирования модели системы управления маркетинговой деятельностью предприятия сферы услуг.

    реферат , добавлен 21.06.2010

    Общая схема процесса проектирования. Формализация построения математической модели при проведении оптимизации. Примеры использования методов одномерного поиска. Методы многомерной оптимизации нулевого порядка. Генетические и естественные алгоритмы.

Особенности стохастического моделирования.

Особенности стохастического мод-ия: стохастическое моделирование – моделирование случайных воздействий.

Стохастическое моделирования (СМ) - м оделирование случайных процессов и случайных событий.

Суть СМ – многократное повторение модельных экспериментов с целью получения статистики о свойствах системы, получения данных о свойствах случайных событий и величин.

Цель – в результате СМ для параметров объектов должна быть получена оценка мат ожидания, дисперсии и закона распределения случайной величины.

Понятие случайного события и случайной величины.

Случайным событием называется любой факт, который в результате опыта может произойти или не произойти. Случайные события могут быть: Достоверными (событие, которое происходит в каждом опыте). Невозможными (событие, которое в результате опыта произойти не может).

Числовая величина, принимающая то или иное значение в результате реализации опыта случайным образом, называется случайной величиной .

Характеристики случайных величин и случайных событий.

Характеристики случайного события:

Частота появления события - вероятность появления того или иного события при неограниченном количестве опытов.

Характеристики случайной величины:

    Математическое ожидание - число, вокруг которого сосредоточены значения случайной величины.

    Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания.

Плотности распределения вероятности - вид функции, которой определяет закон распределения случайных величин.

Моделирование случайных событий.

Исходные данные:

Вероятность события Pa;

Требуется построить модель события A, которое происходит с вероятностью Pa.

Алгоритм моделирования:

Используется датчик случайных чисел с равномерным законом распределения от 0 до 1:

Randomize(RND)  x i . 0<=x i <=1

Если выполняется Xi<=Pa то событие A произошло. В противном случае произошло событие не A.

Моделирование полной группы случайных событий.

Группа несовместимых событий называется полной, если при испытаниях только одно событие произойдет обязательно (алгоритм).

Примеры стохастических моделей.

Модели для прогнозирования изменений состояния автотр. предприятия .

Литература: , .

3. Имитационное моделирование

Понятие имитационного моделирования.

Суть ИМ – компьютерный эксперимент – исследования свойств объекта путем экспериментирования с его компьютерной моделью.

Актуальность имитационного моделирования.

1)моделирование сложных систем (когда аналитически использовать объект невозможно)

2)моделирование действия случайных факторов (необходимо многократное повторение)

3)отсутствие математической модели (при исследовании неизвестных явлений).

4)необходимость получения результатов к определенному сроку (скорее всего самая главная причина)

Примеры задач имитационного моделирования: модели систем массового обслуживания, модели случайных событий, клеточные автоматы, модели сложных систем и т.д.

1. Модели систем массового обслуживания

Схема СМО

Цель СМО : определение оптимальных параметров системы

Пример: очередь в супермаркете

На обслуживание могут поступать заявки с более высоким приоритетом. Пример: бензоколонка (скорая, полиция).

2. Модели случайных событий

Случайным называют событие, которое в результате испытания может наступить, а может и не наступить. Исчерпывающей характеристикой случайного события является вероятность его наступления. Примеры: объемы выпускаемой продукции предприятием каждый день; котировки валют в обменных пунктах; интервал времени до появления очередного клиента, длительность проведения технического обслуживания автомобиля.

3. Клеточные автоматы

Клеточный автомат – система, представляющая собой совокупность одинаковых клеток. Все клетки образуют, так называемую, решетку клеточного автомата. Каждая клетка является конечным автоматом, состояния которого определяются состояниями соседних клеток и ее собственным состоянием. Впервые, идея таких автоматов отмечена в работах Неймана в 1940-х годах.

Пример: игра «Жизнь». Была в 1970 году Джоном Конвэем.

7.1 Сущность и задачи стохастического моделирования

Задачи детерминированного факторного анализа (ДФА) нашли широкое применение в практике аналитической работы, однако детерминированный подход не позволяет учитывать влияние на результативный показатель очень многих факторов, не находящихся с ним в пропорциональной зависимости (спрос, текучесть кадров, размещение торговой сети и т. д.). Кроме того, в задачах ДФА невозможно выделить результаты одновременно действующих факторов. Эти недостатки обусловили необходимость применения стохастического моделирования в экономическом анализе, называемого иначе математико-статистическими методами изучения связей, которые являются в определенной степени дополнением и углублением ДФА.

Таким образом, в экономическом анализе стохастические модели используются в тех случаях, когда необходимо:

– оценить влияние факторов, по которым нельзя построить жестко детерминированную модель;

– изучить и сравнить влияние факторов, которые нельзя включить в одну и ту же детерминированную модель;

– выделить и оценить влияние сложных факторов, которые не могут быть выражены одним определенным количественным показателем.

В отличие от детерминированного, стохастический подход для своей реализации требует выполнения ряда предпосылок:

1. Качественная однородность совокупности, т. е. в пределах варьирования значений факторов не должно происходить качественного скачка в характере отражаемого явления.

2. Достаточная численность совокупности наблюдения, позволяющая с точностью и надежностью выявить имеющиеся закономерности (в теории статистики считается, что количество наблюдений должно в 6-8 раз превышать количество факторов).

3. Наличие методов, т. е. специального математического аппарата, позволяющего выявить тесноту связи между изучаемыми показателями и оценить величину влияния факторов на изменение результативного показателя.

В целом стохастическое моделирование предназначено для решения трех задач:

1) установление факта наличия или отсутствия связи между изучаемыми признаками;

2) выявление причинных связей между изучаемыми показателями и количественное измерение действия факторов на результативный показатель;

3) прогнозирование неизвестных значений результативных показателей.

Проведение стохастического моделирования осуществляется согласно следующим этапам:

1) качественный анализ, подразумевающий постановку цели анализа, определение результативных и факторных признаков, отбор и отсев факторов;

2) количественный анализ, т. е. построение регрессионной модели (уравнения регрессии) и расчет параметров уравнений регрессии;

3) проверка адекватности модели, т. е. оценка точности (надежности) уравнения связи и правомерности его использования для практической цели.

Практическая реализация указанных этапов основывается на применении корреляционного и регрессионного методов анализа, рассмотренных ниже.


7.2 Методы стохастического моделирования

Методы стохастического моделирования включают в себя корреляционно-регрессионный анализ, в результате которого будут рассчитаны коэффициенты ее тесноты и значимости (т. е. проведен корреляционный анализ); будет построена регрессионная зависимость (т.е. проведен регрессионный анализ), позволяющая количественно измерить действия факторов на результативный показатель.

1. Корреляционный метод позволяет количественно выразить взаимосвязь между показателями. При этом если показатель зависит от одного фактора, то речь идет о парной корреляции, если он зависит от множества факторов, то о множественной корреляции. Основная особенность корреляционного анализа в том, что он устанавливает лишь факт наличия связи и степень ее тесноты, не вскрывая причины.

Задача корреляционного анализа – выявить тесноту связи изучаемых признаков, что осуществляется либо с помощью коэффициента корреляции (при прямолинейной зависимости), либо с помощью корреляционного отношения (при линейной и нелинейной зависимости).

Коэффициент корреляции (парный коэффициент корреляции, линейный коэффициент корреляции) между фактором х и результативным показателем Y определяется следующим образом:

где y – абсолютное значение результативного показателя; x – абсолютное значение фактора; n – количество наблюдений.

Коэффициент корреляции может принимать значения от –1 до +1. При этом если:

r = -1, то это означает наличие функциональной связи обратно-пропорционального характера;

r = +1, то это означает наличие функциональной связи прямо-пропорционального характера (и в этом и в другом случае переходят к детерминированному факторному анализу);

r = 0, то это означает отсутствие связи между фактором и изучаемым результативным показателем (фактор исключается из факторной системы);

Другие значения r свидетельствуют о наличии стохастической зависимости, причем чем больше /r/ стремится к 1, тем связь теснее. В частности:

/r/ < 0,3 означает слабую связь;

0,3 < /r/ < 0,7 – связь средней тесноты;

/r/ > 0,7 – связь тесная, т. е. имеется объективная возможность перейти к стохастическому факторному анализу.

При парной корреляции теснота связи изучается между результативным признаком и фактором.

В случае множественной корреляции тесноту связи между результативным показателем и набором факторов изучают на основе коэффициента множественной корреляции (R):

,

где – среднее значение результативного показателя, вычисленное по уравнению регрессии; – среднее значение результативного показателя, вычисленное по исходным данным.

Коэффициент множественной корреляции принимает только положительные значения в пределах от 0 до 1. При значении R≤0,3 говорят о малой зависимости между величинами, при значении 0,3 < R< 0,6 – о средней тесноте связи, при R>0,6 – о наличии существенной связи.

При множественной корреляции теснота связи изучается:

– между результативным признаком (функцией) и каждой переменной (аргументом);

– между переменными попарно.

Альтернативным показателем степени зависимости между двумя переменными является коэффициент детерминации, представляющий собой возведение в квадрат коэффициента корреляции (r 2 или R 2 – величина достоверности аппроксимации). Коэффициент детерминации, значение которого должно стремиться к 1, показывает, чему равна доля влияния изучаемого (изучаемых) фактора (факторов) на результативный показатель. При этом следует помнить, что при условии, если r 2 (или R 2)<0,5, синтезированные математические модели связи практического значения не имеют.

Практическая реализация корреляционного анализа включает следующие последовательные этапы:

1) постановка задач и выбор признаков;

2) формирование массива исходной статистической информации, определение степени ее однородности (на основе коэффициента вариации);

3) предварительная характеристика взаимосвязи (аналитические группировки, графики);

4) устранение мультиколлинеарности (взаимозависимости факторов), уточнение набора факторов (отбор наиболее существенных) на основе коэффициента корреляции, индекса детерминации или критерия Стьюдента (подробно см. п. 7.3). При этом в ходе отбора факторов следует придерживаться следующих правил:

– учитывать причинно-следственные связи между показателями (не рекомендуется включать в модель взаимосвязанные факторы: если парный коэффициент корреляции между двумя факторами больше 0,85, то один из них необходимо исключить).

– отбирать самые значимые факторы;

– рассматривать только те факторы, которые должны быть количественно измеримы, т. е. иметь единицу измерения и находить отражение в учете и отчетности;

– учитывать только однонаправленные факторы (т. е. при линейном характере зависимости нельзя включать в модель факторы, связь которых с результативным показателем имеет криволинейный характер);

После осуществления всех вышеуказанных процедур в случае установления факта высокой тесноты связи (> 0,7) приступают к решению второй задачи – регрессионному анализу, который позволяет выявить конкретные величины влияния факторов на изменение результативного показателя.

2. Регрессионный анализ – это метод установления аналитического выражения (т.е. уравнения регрессии) стохастической зависимости между исследуемыми признаками.

Уравнение регрессии показывает, как в среднем изменяется результативный признак (Y) при изменении любой из переменных (Х i) и имеет вид: Y = f (x 1 ,x 2,… x n),

где Y – зависимая переменная, т.е. результативный показатель; x i – независимые переменные (факторы).

В ходе регрессионного анализа решаются две главные задачи:

– построение уравнения регрессии, т. е. нахождение вида зависимости между результативным показателем и независимыми факторами;

– оценка значимости полученного уравнения (на основе коэффициента детерминации, критерия Фишера и критерия Стьюдента).

Вид уравнения регрессии определяется по графику, изображающему связь между факторами и результативным показателем, который строится на основе однородной совокупности статистических данных и служит обоснованием уравнения связи.

Если зависимость линейная (на графике изображена в виде прямой восходящей или снисходящей линии), то при:

а) однофакторном анализе уравнение будет иметь вид: Y(х) = а +b·x,

где Y – результативный показатель; b – коэффициент регрессии, который показывает, насколько изменится результативный показатель при изменении фактора на 1 ед.; а – свободный член, который показывает величину влияния неучтенных факторов; х – фактор;

б) многофакторном анализе уравнение будет иметь вид:

Y(х) = а +b 1 x 1 + b 2 x 2 +…+ b n x n.

Если зависимость нелинейная (на графике изображена в виде параболы или гиперболы), то уравнение регрессии принимает следующий вид:

Y(х) = а +b·x + с·x 2 – при графике в виде параболы;

Y(х) = а +b:x 2 – при графике в виде гиперболы.

При сложном характере зависимости между изучаемыми явлениями используются более сложные параболы (третьего, четвертого порядка (полинома) и т. д.), а также квадратическое, степенные, показательные и другие функции.

Выбор конкретного уравнения регрессии и его решение осуществляется в рамках табличного процессора MS Excel или статистического программного пакета STADIA.

Сущность решения уравнений регрессии заключается в нахождении параметров регрессии (а и b). Это осуществляется по способу наименьших квадратов с использованием системы нормальных уравнений, суть которого заключается в минимизации суммы квадратов отклонений фактических значений результативного показателя от его расчетных значений.

При прямолинейной зависимости система нормальных уравнений имеет вид:

∑y = na +b∑x

∑xy = a∑x +b∑x 2 .

При криволинейной зависимости:


∑y(1/x)= a∑1/x +b∑(1/x) 2 .

Для оценки адекватности модели используют такие критерии, как ошибка аппроксимации, F-отношения, коэффициента детерминации, подробно рассмотренные в п. 7.3.

В необходимых случаях построение уравнения регрессии может быть использовано для прогнозирования результативного признака.

Апробируем методику корреляционно-регрессионного анализа на конкретном примере.

Пример 7.1 На основании данных табл. А необходимо проанализировать зависимость между расходами на оплату труда (Y) и выручкой от продажи товаров (х).


Таблица А – Данные о выручке от продажи товаров и сумме расходов на оплату труда в разрезе торговых организаций тыс. руб.

№ мага-зинов Выручка от продажи товаров № магазинов Выручка от продажи товаров Сумма расходов на оплату труда
А 1 2 Б 3 4
1. 3 200 190 15. 1 690 177
2. 500 45 16. 7 450 230
3. 12 000 670 17. 12 900 587
4. 8 560 345 18. 2 010 166
5. 14 100 713 19. 1 650 105
6. 11 300 470 20. 5 115 241
7. 4 300 194 21. 8 945 400
8. 1 010 98 22. 11 900 523
9. 8 230 244 23. 14 200 780
10. 12 560 510 24. 10 300 576
11. 6 201 215 25. 11 450 425
12. 11 500 603 26. 13 000 606
13. 13 300 575 27. 6 100 210
14. 1 000 95 28. 7 500 249

На основании данных табл. А построим график зависимости изменения расходов на оплату труда от изменения товарооборота (см. рисунок).

Зависимость динамики расходов на оплату труда от выручки от продажи товаров


Данные графика свидетельствуют о том, что между расходами на оплату труда и выручкой от продажи товаров существует прямолинейная зависимость. Далее измерим тесноту связи между изучаемыми показателями на основе коэффициента корреляции, для чего сгруппируем магазины по сумме выручки от продажи товаров (см. тему 3) и составим следующую разработочную таблицу (табл. Б).

Таблица Б – Разработочная таблица для определения показателей, используемых при расчете коэффициента корреляции

Группы магазинов по сумме выручки от продажи товаров Количество магазинов

Выручка от продажи товаров (x i), млн руб.

Сумма расходов на оплату труда (y i), млн руб.

От 500 до 3 220 включ. 7,000 11,060 0,876 9,689 122,324 0,768
От 3 221 до 5 440 включ. 2,000 9,415 0,435 4,096 88,642 0,190
От 5 441 до 8 160 включ. 4,000 27,251 0,904 24,635 742,617 0,818
От 8 161 до 10 880 включ. 4,000 36,035 1,565 56,394 1298,521 2,450
Св. 10 881 11,000 138,210 5,859 809,772 19102,004 34,328
Итого 28,000 221,971 9,639 904,586 21354,107 38,550

Примечание. Согласно данным таблицы, элементы расчета коэффициента корреляции имеют следующие значения:

Σx i = 221,971;

Σy i = 9,639; Σy i x i =904,586; Σx 2 i = 21 354,107; Σy 2 = 38,550.

Рассчитанные данные подставляются в формулу коэффициента корреляции:

r =

Коэффициент детерминации: r 2 =0,8 2 =0,64.

Коэффициент корреляции, равный 0,8 ед., означает наличие высокой стохастической зависимости между суммой расходов на оплату труда и выручкой от реализации. Образование данной стохастической зависимости объясняется наличием (и доминированием в данном случае) постоянной части расходов по заработной плате, начисление которой не увязано с динамикой результата хозяйственной деятельности организации, т. е. выручки от продажи, а значение коэффициента детерминации, составляющее 0,64 ед. означает, что изменение расходов на оплату труда на 64 % объясняется изменением выручки от продажи, что дает основание для проведения регрессионного анализа.

Согласно виду графика, представленного на рисунке, между изучаемыми показателями существует прямолинейная корреляционная зависимость, в связи с чем уравнение регрессии будет иметь вид: Y(х) = а +b·x,

где Y – расходы на оплату труда; х – выручка от продажи товаров.

Для определения параметров а и в следует решить систему нормальных уравнений методом наименьших квадратов:

∑y = na +b∑x

∑xy = a∑x +b∑x 2 .

Отсюда значения коэффициента в определяется по формуле

Рассчитанное значение параметра в говорит о том, что при увеличении выручки от продажи товаров на 1 млн руб. расходы на оплату труда возрастут на 42,3 тыс. руб. При этом подставив значение данного параметра в первое уравнение системы, определим значение параметра а:

∑y = na +b∑x

9,639=а·28+0,0423·221,971

28а=0,0423·221,971-9,639

Значение параметра а показывает, что коэффициент регрессии может быть применим для торговых организаций с размером выручки от продажи за год свыше 9 млн. руб.

В целом уравнение регрессии имеет вид: y = 0,009+0,0423·х.

Полученное уравнение связи можно использовать для прогнозирования суммы расходов на оплату труда, если выручка от продажи возрастет и составит, например, 15 млн руб.:

y = 0,009+0,0423·х=0,009+0,0423·15=0,644 млн. руб.

7.3 Критерии оценки адекватности результатов стохастического анализа

При выполнении регрессионного анализа необходимо получить оценки, позволяющие оценить точность модели, вероятность ее существования и обоснованность применения в аналитических целях. Таким образом, качество корреляционно-регрессионного анализа обеспечивается выполнением ряда следующих условий:

1. Однородность исходной информации, которая оценивается в зависимости от относительного ее распределения около среднего значения. Критериями здесь служат (подробно см. тему 3):

– среднеквадратическое отклонение;

– коэффициент вариации;

– коэффициент равномерности;

– закон нормального распределения.

2. Значимость коэффициентов корреляции может быть оценена (наряду с уже указанным выше коэффициентом детерминации) с помощью t-критерия Стьюдента, алгоритм расчета которого при линейной однофакторной связи имеет вид:

.

Если полученное эмпирическое (расчетное) значение критерия (t э) будет больше критического табличного значения (t т), то коэффициент корреляции можно признать значимым.

3. Адекватность (надежность) уравнения регрессии оценивается с помощью F-критерия Фишера, алгоритм расчета которого выглядит следующим образом:

,

где m – число параметров уравнения регрессии; σ 2 y – дисперсия по линии регрессии; σ 2 ост – остаточная дисперсия.

Если эмпирическое значение F-критерия (F э) окажется выше табличного (F т), то уравнение регрессии следует признать адекватным, т. е. правомерным для использования. При этом чем выше величина критерия Фишера, тем точнее в уравнении связи представлена зависимость, сложившаяся между факторными и результативными показателями.

4. Сравнительная сила влияния факторов, оценка которой необходима с целью определения проблемной и наиболее эффективной в перспективе зоны для направления усилий в конкретную область бизнеса. Решение этой задачи может быть осуществимо посредством использования:

а) частных коэффициентов эластичности (Э i), показывающих ожидаемый рост результативного показателя (в %) с возрастанием факторного на 1 %:

б) стандартизированных бета-коэффициентов (β i):

Чем выше бета-коэффициент, тем сильнее воздействие анализируемого фактора на результативный признак.

Тесты для самоконтроля знаний по теме 7

1. Коэффициент корреляции, равный 0, означает:

б) наличие функциональной связи прямо-пропорционального характера;

2. Коэффициент корреляции, равный (-1), означает:

а) наличие функциональной связи обратно пропорционального характера;

б) наличие функциональной связи прямо пропорционального характера;

в) отсутствие связи между фактором и изучаемым результативным показателем.

3. О наличии стохастической зависимости свидетельствует значение коэффициента корреляции, равное:

г) другие значения.

4. Аналитическая задача, которую позволяют решить методы стохастического моделирования:

а) установление факта наличия или отсутствия связи между изучаемыми признаками;

б) выявление общей тенденции изменения изучаемого показателя;

в) выбор оптимального варианта решения проблемы;

г) количественно оценка влияния факторов, находящихся с результативным показателем в функциональной зависимости.

5. Выявить тесноту связи факторных показателей и результативного позволяет:

а) корреляционный анализ;

б) регрессионный анализ;

в) детерминированный анализ.

6. Метод установления аналитического выражения (уравнения) стохастической зависимости между исследуемыми признаками – это … анализ.

7. В ходе регрессионного анализа решается следующая аналитическая задача:

а) нахождение вида зависимости между результативным показателем и независимыми факторами;

б) выявление тесноты связи факторных показателей и результативного;

в) количественная оценка влияния факторов, находящихся с результативным показателем в функциональной зависимости.

8. Для оценки достоверности полученного уравнения регрессии используют:

а) коэффициент детерминации;

б) критерий Фишера;

в) критерий Стьюдента;

г) коэффициент Кенделя;

д) коэффициент долевого участия интенсивных факторов;

е) коэффициент ритмичности;

ж) коэффициент экстенсивности.


9. При линейной однофакторной зависимости уравнение регрессии будет иметь вид:

а) y (х) = а +b·x;

б) y (х) = а +b 1 ·x 1 + b 2* x 2 +…+ b n ·x n ;

в) y (x) = a+в:х.

10. При линейной многофакторной зависимости уравнение регрессии будет иметь вид:

а) y(х) = а +b·x;

б) y (х) = а +b 1 ·x 1 + b 2 ·x 2 +…+ b n ·x n ;

в) y (x) = a+в:х.

11. В уравнении регрессии вида y(х) = а +b·x y – это:

а) результативный показатель;

б) коэффициент регрессии;

в) свободный член.

12. В уравнении регрессии вида y(х) = а +b·x а – это:

а) результативный показатель

б) коэффициент регрессии;

в) свободный член.

13. Коэффициент регрессии (b) в уравнении регрессии вида y(х) = а +b·x показывает:

а) на сколько изменится значение результативного показателя при изменении фактора на единицу;

б) величину влияния неучтенных факторов.


14. Если полученное эмпирическое (расчетное) значение критерия Стьюдента (t э) будет больше критического табличного значения (t т), то коэффициент корреляции … признать значимым.


Международной политике и законодательству. 10. Анализ должен быть эффективным, т.е. затраты на его проведение должны давать многократный эффект. 4. ЭКОНОМИЧЕСКИЙ АНАЛИЗ В ДЕЯТЕЛЬНОСТИ ОВД Содержание, цели и задачи экономико-финансового анализа, проводимого органами внутренних дел В рыночных условиях проведения социально-экономических реформ в деятельности органов внутренних дел по...

3.1. Математические модели случайных процессов

При проведении научных исследований в производстве и в быту часто встречаются события, которые многократно появляются при одних и тех же условиях, но отличающиеся каждый раз друг от друга. Например, измеряя значение напряжения в сети переменного тока с помощью одного и того же прибора с одинаковой тщательностью, никогда не получим одинаковых данных. Наблюдается случайное рассеивание. Для оценки величины рассеивания вводится вероятность, как мера измерения.

Закономерность рассеивания, выраженная функцией распределения вероятностей, носит общий характер.

Если входные параметры объекта, смена состояний объекта или его выходные параметры описываются случайными распределениями вероятностей, то эти объекты относятся к классу стохастических. При моделировании поведения данных объектов применяется аппарат теории вероятностей, а для идентификации параметров моделей применяется аппарат математической статистики. Рассмотрим виды моделей, которые могут быть применены для описания стохастических объектов.

3.1.1. Распределение случайных событий . Массовые явления или процессы характеризуются многократным повторением при постоянных условиях некоторых опытов (операций и прочее). Абстрагируясь от специальных свойств этих опытов, в теории вероятностей вводится понятие испытания (опыта). Испытанием называется осуществление определенного комплекса условий, который может быть воспроизведен сколь угодно большое число раз. Явления, происходящие при реализации этого комплекса условий (в результате испытания), называются событиями .

Положительное число в отрезке , представляющее собой количественную меру возможности реализации случайного события в испытании, называется его вероятностью. Вероятность появления события А обозначают символом Р(А) , причем 0£Р(А)£ 1. Вероятность понимается как идеальная мера возможности появления события.

Случайная величина рассматривается как функция, аргументом которой служит элементарное случайное событие. Дискретной случайной величиной называется такая, которая может принимать конечное или бесконечное счетное множество значений, например возможны значения x 1 , x 2 , …, x n , … Для каждого события x i определены вероятности P(x i) . Распределение вероятностей дискретной случайной величины, представленное на рис. 3.1, рассматривают как точечное распределение вероятностей.

При непрерывном распределении случайной величины вероятности распределены сплошной полосой по всей оси x или по некоторым ее участкам с определенной плотностью.

Распределение вероятностей носит название теоретического распределения случайной величины.

Интегральная функция распределения вероятностей определяет вероятность того, что случайная величина X меньше значения x

. (3.1)

Пример задания интегральной функции распределения вероятностей приведен на рис. 3.2.

Дифференциальная функция распределения вероятностей (плотность распределения вероятностей) определяет вероятность того, что случайная величина X меньше значения x

. (3.2)

Пример задания дифференциальной функции распределения вероятностей приведен на рис. 3.3.

Совокупность случайных величин X(Q) аргумента Q , образует случайный процесс. Течение случайного процесса описывают некоторой функцией X(Q) , где Q - аргумент функции со значениями из множества Q . Функцию X(Q) , наблюдаемую в некотором опыте, соблюдая определенный комплекс условий, называют выборочной функцией или реализацией случайного процесса.

Если множество Q произвольно, то вместо термина «случайный процесс» применяют термин «случайная функция». Название «случайный процесс» применимо в тех случаях, когда параметр Q интерпретируется как время. Если аргумент случайной функции является пространственной переменной, то функцию называют случайным полем.

Определение. Моделью случайного процесса называют случайную функцию X(Q) , заданную на множестве Q , принимающую действительные значения и описываемую семейством распределений :

, QiÎQ, i=1,2,...,n, n=1,2,...,

которое удовлетворяет условиям согласованности

,

= ,

где i 1 , i 2 ,…, i n , - любая перестановка индексов 1 , 2 ,..., n .

Набор функций называется конечномерными распределениями случайной функции или интегральной функции распределения вероятностей многомерной случайной величины. При n =1 получим одномерное распределение (3.1). Модель многомерного распределения необходима для моделирования многопараметрической случайной величины.

При решении многих задач моделирования приходится оперировать с несколькими случайными функциями. Для того чтобы над ними производить математические операции, недостаточно, чтобы каждая из этих случайных функций была задана в отдельности. Последовательность функций X 1 (Q), X 2 (Q),…, X n (Q) возможно заменить векторной функцией x(Q) , компонентами которой служат случайные функции X i (Q), (i=1,2,…,n) .

Явные выражения для конечномерных функций распределения случайного процесса бывают сложными и неудобными для применения. Поэтому в ряде случаев предпочитают задавать конечномерные распределения их плотностями (дифференциальной функцией распределения вероятностей многомерной случайной величины) или характеристическими функциями.

Если - плотность функций распределения , то

=

= .

Связь интегральной функции распределения вероятностей одномерной случайной величины и ее дифференциальной функцией распределения вероятностей показана формулой

.

Модель системы может быть задана также в виде характеристической функции конечномерного распределения последовательности

X 1 (Q),X 2 (Q), …, X n (Q), Qi³0 >, i=1,n, n=1,2,...,

которая определяется формулой

где M - символ математического ожидания, u 1 ,u 2 ,...,u k - вещественные числа.

Если существует плотность конечномерного распределения, то модель в виде характеристической функции является преобразованием Фурье плотности распределения. Для одномерной случайной величины характеристическая функция определится по формуле

.

3.1.2. Корреляционные функции. Исчерпывающую характеристику модели стохастического объекта в виде случайной функции в широком смысле дает семейство конечномерных распределений. Однако решение многих теоретико-вероятностных задач зависит только от небольшого числа параметров, характеризующих входящие в задачу распределения. Наиболее важными числовыми характеристиками распределений являются их моменты. В теории случайных функций роль моментов распределений играют моментные функции. Рассмотрим модели в виде моментных функций для одномерной случайной величины.

Момент k –го порядка дискретной случайной величины определяется по формуле

.

Для непрерывной случайной величины моментная функция k

.

Рассмотрим модели в виде моментных функций для многомерной случайной величины.

Определение . Модель случайной функции X(Q i), Q i ÎQ в виде моментной функции задается отношением

если математическое ожидание в правой части равенства имеет смысл при всех QiÎQ, i=1,n . Величина q=j 1 +j 2 +...+j n называется порядком моментной функции.

Если известны характеристические функции конечномерного распределения, то моментные функции с целочисленными индексами могут быть найдены с помощью дифференцирования

при u 1 =u 1 =…=u n =0 .

Кроме моментных функций в качестве моделей часто рассматривают центральные моменты функции. Центрированной случайной величиной называется случайная величина . Для непрерывной случайной величины центральная моментная функция k –го порядка определяется по формуле

.

Для многомерной случайной величины центральные моменты функции определятся по формуле

которые являются моментными функциями центрированной случайной функции многих параметров.

Среди моментных функций особое значение имеют функции первых двух порядков, которые могут иметь обозначения:

m(Q)=m 1 (Q 1)=MX(Q),

R 1 (Q 1 ,Q 2)=m 1 (Q 1 ,Q 2)=M{}.

Функции m(Q) называются средним значением или математическим ожиданием, а R 1 (Q 1 ,Q 2) - корреляционной функцией. При Q 1 =Q 2 =Q корреляционная функция дает дисперсию s(Q) величины e(Q), R 1 (Q 1 ,Q 2)=s 2 (Q) .

Величину

называют коэффициентом корреляции случайных величин X(Q 1) и X(Q 2) .

До сих пор мы рассматривали модели с детерминированной топологией сети. При моделировании сложного проекта нередко наиболее гибкими и полезными оказываются сетевые модели со стохастической структурой. Стохастическую сеть определяют как сеть, содержащую альтернативные узлы (состояния), при этом дуги (работы) характеризуются не только вероятностным распределением продолжительности, но и вероятностью их выполнения.

Стохастическая сетевая модель с множеством возможных исходов, являясь дальнейшим развитием традиционных сетей, дает возможность полнее отобразить процесс разработки и создания сложного проекта. Применяемый для анализа стохастических сетевых моделей математический аппарат позволяет вычислять вероятности различных альтернативных исходов, оценивать время их возможной реализации.

Стохастическая сетевая модель есть конечный граф G=(W,А), где W– есть множество детерминированных и альтернативных вершин, отождествляемых с событиями, а технологическая матрица А={p ij } задает множество ориентированных дуг, отождествляемых с работами (или связями). Для стохастических сетей 0£ p ij £ 1, причем p ij =1 определяет работу (i,j) аналогично принятым в традиционных сетях определениям, а

0 < p ij < 1 соответствует альтернативному событию i, из которого с вероятностью p ij «выходит» работа (i,j). Другими словами p ij – вероятность того, что работа (i,j) будет выполнена при условии, что узел i выполнен.

Пусть j(t ij) – плотность распределения времени выполнения работы (i,j). М[х] – математическое ожидание случайной величины х.

Вводится условная производящая функция моментов случайной величины t ij как М ij (s)=М[е st ij ], т е.


М ij (s)= ò е st ij j(t ij)dt ij (для непрерывной случайной величины),

å е st ij j(t ij) (для дискретной случайной величины).

В частности, М ij (s)=М[е sа ] = е sа при t ij =а=const, М ij (0)=1.

Для каждой дуги (i,j) определяется Y–функция как

Y ij (s) = p ij М ij (s).

Исходная сеть преобразуется в эквивалентную, используя три базисных преобразования:

· последовательные дуги,

· параллельные дуги,



Для последовательных дуг (рис.7)

Y ik (s) = Y ij (s)Y jk (s).

Для параллельных дуг (рис.8)

Y ij (s) = Y a (s) +Y b (s).

Для петель вида (рис. 9)

Y ij (s) = Y b (s)/.

Комбинируя базисные преобразования, любую сеть можно преобразовать в эквивалентную сеть, состоящую из одной дуги (Е-дуги).

Цель временного анализа стохастической сети состоит в вычислении математического ожидания и дисперсии времени выполнения сети (или любого ее фрагмента) и вероятности выполнения заключительного (или любого другого события) сети.

Здесь используется теория замкнутых потоковых графов, где введенная выше Y–функция трактуется как соответствующий коэффициент пропускания дуги. Для применения результатов этой теории к открытой сети с искомым параметром Y Е (s) вводится дополнительная дуга с параметром Y А (s), соединяющая конечное событие (сток) с начальным (источником).

Затем используется топологическое уравнение для замкнутых графов, известное как правило Мейсона, следующего вида:

1 – åТ(L 1) + åТ(L 2) – åТ(L 3) +…+ (-1) m åT(L m) + … =0, (10)

где åT(L m) – сумма эквивалентных коэффициентов пропускания для всех возможных петель m–го порядка.

Эквивалентный коэффициент пропускания для петли m–го порядка равен произведению коэффициентов пропускания m не связанных между собой петель первого порядка, т.е.

T(L m)=Õ m k=1 T k .

Непосредственно из правила Мейсона следует, что 1–Y А (s)Y Е (s)=0 или Y А (s)=1/Y Е (s). Используя данный результат, в топологическом уравнении (10) Y А (s) заменяется на 1/Y Е (s) и затем оно решается относительно Y Е (s), тем самым получается эквивалентная Y–функция для исходной стохастической сети.

Поскольку Y Е (s) = p Е М Е (s), а М Е (0)=1, то p Е =Y Е (0), откуда следует, что

М Е (s)= Y Е (s)/p Е =Y Е (s) /Y Е (0). (11)

После получения аналитического выражения для М Е (s), вычисляют первую и вторую частную производную по s функции М Е (s) в точке s=0, т.е.

m 1E =¶/¶s[М Е (s)] s=0 (12)

m 2E =¶ 2 /¶s 2 [М Е (s)] s=0 (13)

Первый момент m 1E относительно начала координат есть математическое ожидание времени выполнения сети (преобразованной в эквивалентную ей Е-дугу), а дисперсия времени выполнения сети равна разности между вторым моментом m 2E и квадратом первого, т.е.

s 2 = m 2E – (m 1E) 2 . (14)

Таким образом, описанный выше аппарат позволяет вычислять временные параметры любых интересующих пользователя событий стохастической сети, а также определять вероятность их наступления.

Используя полученную информацию, можно с помощью неравенства Чебышева оценивать вероятность любых доверительных интервалов времени окончания проекта при произвольных законах распределения времени выполнения отдельных операций. Если время выполнения каждой операции имеет нормальное распределение, то результирующее время также нормально распределено. В этом случае можно получить вероятностные оценки времени выполнения проекта, используя интегральную теорему Муавра-Лапласа. Кроме того, при достаточно большом числе работ в сети и выполнении некоторых условий (в частности, независимость работ) можно использовать предельную теорему Ляпунова и считать результирующее время выполнения проекта нормально распределенной случайной величиной с характеристиками, вычисленными по выше описанной методике.

Таким образом, стохастическая сетевая модель включает все случайные отклонения и неопределенность, возникающие непосредственно во время выполнения каждой отдельной работы.

3.4. Формализация общей постановки задачи планирования работ при управлении проектами и описание универсальной сетевой модели и задач временного анализа, решаемых на ее основе

В результате анализа и синтеза вышерассмотренных моделей предложена универсальная математическая модель, при этом классические, обобщенные и стохастические сетевые модели являются ее частными случаями.

Данная модель (названная циклическая стохастическая сетевая модель - ЦССМ ) является более гибким и адекватным инструментом для описания процесса управления разработкой сложного проекта.

ЦССМ представляет собой конечный, ориентированный, циклический граф G(W,A), состоящий из множества событий W и дуг (i,j)(события i, jОW), определяемых матрицей смежности А={p ij }. 0Ј p ij Ј1, причем p ij =1 задает детерминированную дугу (i,j), а 0< p ij <1 определяет альтернативное событие i, которое с вероятностью p ij связано дугой с событием j. Множество дуг подразделяется на дуги-работы и дуги-связи. Первые реализуют определенный объем производственной деятельности во времени, второй тип дуг отражает исключительно логические связи между последними. Событиями могут быть как начала и окончания выполняемых работ, так некоторые их промежуточные состояния.

Обозначим через Т i время свершения i-го события, тогда соотношение между сроками свершения событий, связанных дугой (i,j), задается неравенством:

Т j – Т i і y ij , (15)

где y ij в общем случае случайная величина, распределенная по некоторому закону в интервале от – Ґ до 0 или от 0 до +Ґ.

Кроме того, возможны абсолютные ограничения на момент реализации события i:

l i Ј Т i ЈL i . (16)

Соотношения (15)-(16) являются обобщением соответствующих неравенств при описании обобщенных сетевых моделей, где параметр y ij и матрица смежности А носят детерминированный характер.

Рассмотрим смысловую нагрузку соотношения (15) при вероятностном характере параметра y ij .

Если (i,j) есть дуга-работа (или ее часть), то положительно распределенная случайная величина y ij задает распределение минимальной продолжительности этой работы (связанной с максимальным насыщением ее определяющим ресурсом). В работе показано, что распределение величины y ij является унимодальным и асимметричным, а данным требованиям удовлетворяет бета-распределение, таким образом, минимальная продолжительность работы есть случайная величина y ij =t min (i,j), распределенная по закону бета-распределения на отрезке [а, b] с плотностью

j(t)=С(t – a) p-1 (b – t) q-1 , (17)

где С определяется из условия

Если же случайная величина y ij в (15), соответствующая дуге-работе (i,j), распределена в интервале от – Ґ до 0, то –y ij =t max (j,i) задает распределение длины максимального временного интервала, на протяжении которого работа (i,j) должна быть начата и окончена даже при минимальном насыщении ее определяющим ресурсом. Для этой величины получили ее распределение аналогичного вида (17). Зная распределение случайной величины y ij для каждой работы (i,j), по соответствующим формулам вычисляются ее математическое ожидание и дисперсия.

Введение в (15) отрицательно распределенных величин y ij для дуг-работ (i,j) существенно расширяет возможности описания временных характеристик работ, делая широко используемую вероятностную модель лишь одним из частных случаев.

Для дуг-связей (i,j) величина y ij задает распределение временной зависимости между событиями i и j, причем положительно распределенная величина y ij определяет взаимосвязь типа «не ранее» (событие j может наступить не раньше, чем через y ij дней после свершения события i), а отрицательно распределенная величина y ij определяет взаимосвязь типа «не позднее» (событие i может наступить не позже, чем через –y ij дней после свершения события j). В последнем случае такие связи называют «обратными».

Таким образом, здесь мы получили обобщение этих связей с учетом возможно вероятностного их характера.

Так как сроки свершения событий Т i определяются суммой продолжительностей работ, технологически им предшествующих, то при достаточно большом числе таких работ в соответствии с центральной предельной теоремой распределение случайной величины Т i стремится к нормальному с параметрами – математическое ожидание MТ i и дисперсия DТ i . Нормальное распределение имеет и параметр y ij , соответствующий «обратным» дугам, что также подтверждается статистическим анализом.

Абсолютные ограничения на сроки свершения событий, заданные (16), отражают соответствующие директивные, организационные и технологические ограничения на сроки выполнения работ или их частей, заданные в «абсолютной» (реальной или условной) шкале времени. Абсолютные ограничения также характеризуются типом «не ранее» или «не позднее» и принимает вид: Т i – Т 0 і l i , Т 0 – Т i і –L i . Таким образом, абсолютные ограничения вида (16) являются частным случаем ограничений вида (15) для определенных дуг-связей.

Введение стохастической матрицы смежности А в сочетании с обобщенными связями дает дополнительные возможности для описания процесса создания сложного проекта.

Пусть L(i,j) – некоторый путь, соединяющий события i и j:

L(i,j)={i=i 0 ®i 1 ®i 2 ®…®i v =j}. (18)

Этот путь детерминированный , если для всех kО справедливо pi k-1 i k =1, и стохастический , в противном случае. Таким образом, стохастический путь содержит хотя бы одну дугу, вероятность «исполнения» которой строго меньше 1.

Аналогично определяется детерминированный и стохастический контур К(i)={i=i 0 ®i 1 ®i 2 ®…®i v =i}. (такие события i называются «контурными»).

Если события i и j соединены путем L(i,j), то вероятность свершения события j при условии, что событие i произошло Р(j/i) есть произведение коэффициентов матрицы смежности А, соответствующих дугам связующего пути:

Р(j/i)=Х v k=1 p i k-1 i k . (19)

Если события i и j соединены несколькими путями, то выполняется эквивалентное GERT-преобразование данного фрагмента сети в соответствии с приведенными в работе формулами, вычисляется производящая функция Y ij (s) преобразованного фрагмента, и вероятность свершения события j при условии, что событие i произошло Р(j/i)= Y ij (0).

Первая производная функции Y ij (s)/ Y ij (0) по s в точке s=0 (первый момент m 1 (j/i)) определяет математическое ожидание М(j/i) времени свершения события j относительно времени свершения события i. Вторая производная функции Y ij (s)/ Y ij (0) по s в точке s=0 (второй момент m 2 (j/i)) позволяет вычислить дисперсию времени свершения события j относительно времени свершения события i по формуле

s 2 (j/i) =m 2 (j/i) – (m 1 (j/i)) 2 . (20)

Длина пути L(i,j) есть случайная величина, математическое ожидание которой МL(i,j) есть сумма математических ожиданий длин всех дуг, составляющих данный путь, а дисперсия DL(i,j) равна сумме дисперсий.

При этих условиях длина пути (контура) может принимать отрицательные значения, что интерпретируется следующим образом:

если L(i,j)<0 и дуга (j,i) имеет отрицательно распределенный параметр y ji , то событие j должно свершиться не позднее чем через –y ji дней после наступления события i. Параметр y ji носит вероятностный характер, что позволяет более гибко (по отношению к циклическим сетевым моделям) описывать логико-временные связи между событиями.

В качестве параметра дуги y ij можно рассматривать также любой характерный параметр, который обладает аддитивностью по дугам любого пути (например, стоимость работы), при этом с помощью эквивалентного GERT-преобразования получим математическое ожидание и дисперсию стоимости фрагмента сети или проекта в целом.

Задачи временного анализа ЦССМ (и алгоритмы их решения) так же, как и временной анализ классических, обобщенных или стохастических сетевых моделей, лежат в основе решения всех задач планирования и управления проектом. Они имеют самостоятельное значение при решении задач управления проектом без учета ограничений на ресурсы.

Задачи временного анализа также необходимы для генерирования различных вариантов плана при определенных значениях вектора наличия ресурсов с целью их последующего сопоставления, оценки качества вариантов плана и выбора направления его дальнейшего улучшения.

При решении задач оптимального планирования работ при управлении проектами алгоритмы временного анализа ЦССМ применяются как инструмент для вычисления необходимых параметров, используемых в соответствующих оптимизационных алгоритмах с целью обеспечения выполнения ограничений технологического характера.

Задача временного анализа ЦССМ сводится к нахождению случайного вектора Т=(Т 0 ,Т 1 ,…,Т n), где Т i есть время свершения i-го события, координаты которого удовлетворяют неравенствам (15),(16) и обращают в экстремум некоторую целевую функцию f(T).

Выделены три класса задач временного анализа :

· классические , в которых для вычисления {Т i } используются математические ожидания продолжительностей всех дуг;

· вероятностные, в которых на основании предельной теоремы Ляпунова или другими аналитическими средствами вычисляются математические ожидания сроков свершения i–х событий – {МТ i }, являющиеся аргументами целевой функции f(T);

· статистические , в которых для заданного уровня достоверности р по методике, описанной в работе, определяются р-квантильные оценки эмпирических распределений как сроков свершения i-х событий – {W p (Т i)}, так и производных от них величин, в том числе и значений целевой функции f(W p (T)), где W p (Т)={W p (Т 0),W p (Т 1),…,W p (Т n)}.

Вводится понятие непротиворечивости ЦССМ.

Циклическая стохастическая сетевая модель называется непротиворечивой, если найдется хотя бы один допустимый план, вычисленный для соответствующего класса задач временного анализа (классического, вероятностного или статистического), удовлетворяющий системе неравенств (15),(16).

Разберем эти три понятия.

Классическая непротиворечивость модели.

Вычисляются математические ожидания продолжительностей всех дуг, после чего образуется сеть с постоянными длинами дуг. Учитывая стохастический характер рассматриваемой модели и наличие обобщенных связей, в ЦССМ после проведенных выше вычислений могут иметь место стохастические и детерминированные контуры. Доказывается следующая теорема:

Теорема 1 . Для того, чтобы циклическая стохастическая модель, в которой продолжительности дуг вычислены по классической схеме, была непротиворечивой с заданной вероятностью a, необходимо и достаточно, чтобы длины всех детерминированных контуров были не положительны.

Вероятностная непротиворечивость модели .

Вычисляются аналитическим способом математическое ожидание МТ i и дисперсия s 2 Т i сроков свершения событий. Вычисленные подобным способом параметры на 15-20% отличаются по величине от вычисленных классическим способом (по математическим ожиданиям продолжительностей дуг).

Будем говорить о вероятностной непротиворечивости модели в среднем , если полученный таким образом набор удовлетворяет неравенствам (15)-(16), где в качестве значения y ij взято ее математическое ожидание. Доказана справедливость следующей теоремы:

Теорема 2 . Для того, чтобы циклическая стохастическая модель была вероятностно непротиворечивой в среднем, необходимо и достаточно, чтобы математические ожидания длин всех детерминированных контуров были не положительны.

В предположении, что Т i имеют нормальное распределение с параметрами: математическое ожидание – МТ i и дисперсия – s 2 Т i , введем более широкое понятие e-вероятностная непротиворечивость модели .

Будем говорить, что ЦССМ e-вероятностно непротиворечива, если существует e > 0, такое, что для всех Т i , удовлетворяющих неравенству

|Т i –МТ i | < e, справедливы соотношения (15)-(16). В работе доказано следующее:

Теорема 3 . Для того, чтобы циклическая альтернативная модель была e-вероятностно непротиворечивой, необходимо и достаточно, чтобы математические ожидания длин всех детерминированных контуров удовлетворяли соотношению МL(K(i)) Ј –4e.

Вероятностная непротиворечивость модели в среднем является частным случаем e-вероятностной непротиворечивости при e=0.

Статистическая непротиворечивость модели.

При статистическом методе расчета параметров сетевой модели мы имеем дело с их р-квантильными оценками значений, которые являются теоретико-вероятностными аналогами соответствующих показателей. Говорится, что циклическая стохастическая модель статистически непротиворечива с вероятностью р , если для каждого события i существуют р-квантильные оценки сроков свершения событий W p (Т i), удовлетворяющие неравенствам:

W p (Т j) – W p (Т i)і W p (y ij), (21)

l i ЈW p (Т i)ЈL i . (22)

Здесь соотношения (21)-(22) являются вероятностными аналогами (15)-(16), W p (y ij) есть р-квантильная оценка длины дуги (i,j). Доказано следующее:

Теорема 4 . Для того, чтобы циклическая альтернативная модель была статистически непротиворечивой с вероятностью р, необходимо и достаточно, чтобы р-квантильные оценки длин всех детерминированных контуров удовлетворяли соотношению W p (L(K(i))) Ј 0.

Алгоритмы расчета временных параметров ЦССМ.

Планы ранних и поздних сроков.

Для расчета ранних и поздних сроков свершения событий предлагается модифицированный алгоритм «Маятник». Идея модификации заключается в синтезе статистического метода расчета параметров, применяемого для вероятностных сетей, и алгоритма «Маятник», используемого в обобщенных сетях, и последующего применения его для ЦССМ.





Рис.10. Принципиальная блок-схема алгоритма для расчета

р-квантильных оценок ранних сроков свершения событий

Блок 1 . Ввод исходных данных (коэффициентов матрицы А, параметров распределения y ij , уровня достоверности р).

Блок 2 . Вычисление необходимого числа «розыгрышей» N для обеспечения заданной точности результатов. Проделанные расчеты показали, что при р=0.95, e=0.05 получаем N»270.

Блок 3 . v:=v+1 (v – номер «розыгрыша»).

Блок 4 . Розыгрыш v-го варианта случайных величин y ij , каждой в соответствии с ее законом распределения, получение констант y ij (v) – длина дуги (i,j) при v-м розыгрыше.

Блок 5 . Розыгрыш для каждой альтернативной вершины i перехода в смежную вершину j (разыгрывается дискретная случайная величина р ij , представленная i-й строкой матрицы смежности А, 0< р ij <1 и е j р ij =1). Выбранная дуга помечается, остальные из графа исключаются. Если в полученном графе образовался контур К(i), содержащий хотя бы одну помеченную дугу, это есть стохастический контур, вычисляем его длину L (v) K(i) и опять для вершины i разыгрываем дискретную случайную величину р ij . В соответствие с доказанной в работе леммой 1 один и тот же стохастический контур при заданном уровне достоверности р может образоваться не более k раз, где k оценивается по соответствующей формуле. k-кратную длину контура прибавляем к длине дуги, которую мы «разыграли» на (k+1)-м шаге и переходим к анализу другого стохастического контура (если он есть). При этом могут образоваться противоречия в сети (положительные детерминированные контуры), тогда в соответствие с приведенными в работе формулами прибавляем d-кратную длину контура, оценивая тем самым время свершения «выходного» из контура события в среднем.

Блок 6 . Полученную детерминированную обобщенную сеть G (v) разбиваем на две сети G 1 (v) и G 2 (v) , так, чтобы ни G 1 (v) , ни G 2 (v) не содержали контуров. Вершины в сети G 1 (v) упорядочиваем по рангам и в соответствие с ними устанавливаем «правильную» нумерацию. Переносим эту нумерацию на сеть G 2 (v) и на исходную G (v) .

Блок 7 . Для всех вершин i сети G 1 (v) вычисляем ранние сроки свершения

Т i 0(v) :=мах j {Т i 0(v) , Т j 0(v) + y ij (v) }.

Блок 8 . Проделываем процедуры, аналогичные блоку 7, для вершин сети G 2 (v) .

Блок 9 . Если результаты блоков 7 и 8 хоть на одном показателе не совпадают, то возвращаемся к блоку 7 (таких возвратов не более, чем число обратных дуг в G 2 (v)), иначе блок 10.

Блок 10 . Если номер розыгрыша vЈN, то переходим к блоку 4, иначе к блоку 11.

Блок 11 . Из полученной совокупности {Т i 0(v) } для каждой вершины i строим вариационный ряд. Фиксируем такое значение Т i 0(x) , что N x /N=р, где N x – число членов вариационного ряда, меньших Т i 0(x) . Величина Т i 0(x) является искомым р-квантилем раннего срока свершения i-го события – W p (Т i 0). Аналогично, по вариационным рядам {y ij (v) } строим р-квантильные оценки длин дуг – W p (y ij).

На вход блока 6 поступает v-й вариант обобщенной сетевой модели G (v) , и, собственно, блоки 6 – 9 представляют собой укрупненную блок-схему алгоритма «Маятник» для вычисления ранних сроков свершения событий в ОСМ. Применяя соответствующий алгоритм для вычисления поздних сроков свершения событий в блоках 7 и 8, мы получаем Т i 1(v) – поздние сроки свершения событий для v-го варианта обобщенной сетевой модели, при этом блок 11 нам дает W p (Т i 1) – р-квантильные оценки поздних сроков свершения событий.

Планы минимальной продолжительности .

Продолжительность L(Т (v)) любого допустимого плана Т (v) ={Т i (v) } v-го варианта сети G (v) определяется по формуле:

L(Т (v))=мах ij |Т i (v) – Т j (v) |. (23)

Заменяя в блок-схеме на рис. 10 блоки 6 – 9 на блок нахождения минимума функции (23), получаем план минимальной продолжительности для сети G (v) (или «сжатый» план). Величина

L(Т* (v))=min мах ij |Т i (v) – Т j (v) | (24)

является критическим временем сети G (v) .

Используя в блоках 6-9 метод нахождения сжатого плана для ОСМ и пропуская полученные планы через блок 11, получаем вероятностные р-квантильные оценки сжатых планов.

Резервам времени для работы (i,j) соответствуют их р-квантильные аналоги, вычисляемые по формулам:

R п p (i,j)= W p (Т j 1) - W p (Т i 0) - W p (y ij) для полного резерва , (25)

R с p (i,j)= W p (Т j 0) - W p (Т i 0) - W p (y ij) для свободного резерва . (26)

По соответствующим формулам вычисляются р-квантильные коэффициенты напряженности работ W p (k н (i,j)), затем определяются р-квантильная критическая зона , р-квантильная зона резервов и р-квантильная промежуточная зона .

В качестве параметра дуги мы рассматривали время выполнения операции (работы). Можно рассматривать также любой характерный параметр, который обладает аддитивностью по дугам любого пути. Это может быть стоимость работы, количество потребного накапливаемого ресурса и т.п.

Следует отметить, что до настоящего времени широкое практическое применение нашли только методы детерминированного сетевого моделирования, некоторые эвристические методы оптимального распределения ресурсов и параметрические методы оценки затрат (преимущественно в сфере воздушных и космических полетов). Хотя точное решение стоимостных задач календарного планирования на основе классических сетевых моделей теоретически найдено (описано в), но его практическое использование сопряжено с трудностью получения фактических данных о зависимостях «время-стоимость».

Каждая из рассмотренных выше моделей имеет свою предметную область, по своему (более или менее полно) реализует базовые функции управления проектом, и только синтез анализируемых моделей и методов позволяет построить модель, адекватно отражающую процесс реализации сложного проекта в условиях неопределенности, и при этом получить приемлемое в решение сформулированной задачи.

Тема 4. ОПТИМИЗАЦИЯ ПОТРЕБЛЕНИЯ РЕСУРСОВ НА ОСНОВЕ СЕТЕВЫХ МОДЕЛЕЙ

Общие понятия.

Выше были рассмотрены сетевые модели без учета ограниченности ресурсов, т.е. задача наилучшего распределения ресурсов как таковая не ставилась. В рассмотренных нами методах использования сетевых моделей основное внимание уделялось срокам выполнения отдельных работ и выявлению наиболее важных (критических и подкритических) цепочек работ, от которых зависит своевременное окончание проекта (ввод объекта в эксплуатацию). Таким образом, характерной особенностью этих методов является классификация информации по степени ее важности с точки зрения завершения всего комплекса работ в установленный срок.

Количественной мерой важности информации являются резервы времени работ или коэффициенты напряженности

К ij =1 – R п ij /(T n 0 –Т кр (i,j)), (25)

где R п ij – полный резерв работы (i,j), T n 0 – критическое время выполнения проекта, Т кр (i,j) – продолжительность совпадающего с критическим путем отрезка максимального пути, содержащего работу (i,j). 0 £ К ij £ 1, причем, чем ближе К ij к 1, тем относительно меньше резерва в запасе у работы (i,j), следовательно, выше риск ее невыполнения в заданные сроки. Например, у работы (2,5) (рис.5) Т кр (2,5)=5, R п 25 =3, откуда К 25 =1 –3/(22 – 5)=0.82, а у работы (5,8) Т кр (5,8)=0, R п 58 =12, откуда К 58 =1 –12/(22 – 0)=0.45. Работы могут обладать одинаковыми полными резервами, но степень напряженности сроков их выполнения может быть различна. И наоборот, различным полным резервам могут соответствовать одинаковые коэффициенты напряженности. Имея информацию, классифицированную подобным образом, руководитель проекта в каждый момент времени может определить, на каком участке следует сосредоточить внимание (и ресурсы) для ликвидации намечающихся отклонений от заданного срока завершения всех работ.

Прежде чем наметить дальнейшие пути совершенствования методов сетевого планирования и управления, остановимся подробнее на некоторых основных недостатках, присущих методам, рассмотренным выше.

Давая временную оценку продолжительности какой-либо работы, мы предполагали использование для выполнения этой работы определенных ресурсов с определенной интенсивностью (интенсивность потребления ресурса – это количество ресурса, потребляемое в единицу времени).

В момент назначения временной оценки неизвестно, когда эта работа должна будет выполняться, какие другие работы проекта, потребляющие тот же вид ресурса, будут вестись одновременно. Более того, как правило, одни и те же ресурсы могут потребоваться одновременно на разных проектах. Поэтому не исключено, что суммарная потребность в том или ином ресурсе в отдельные моменты времени может превосходить их наличный уровень. В этих случаях придется или уменьшать интенсивность потребления ресурсов на отдельных работах, либо отложить выполнение ряда работ на более поздние сроки, зачастую за пределы полных резервов этих работ. Это приводит в процессе выполнения проекта к частым корректировкам исходного плана, иными словами, к неустойчивости плана.

Очевидно, если заранее при планировании процесса выполнения проекта учесть ограниченность ресурсов, то можно получить гораздо более надежный план.

Наличный уровень ресурсов и возможные сроки завершения проекта взаимосвязаны. Время завершения всего проекта будет зависеть от того, когда и какое количество ресурсов будет выделено на каждую работу, а это в значительной мере определяется их предполагаемым наличием в каждый момент времени.

Таким образом, возникает задача о распределении ресурсов в сетевой постановке.

Вообще говоря, любой процесс производственного планирования есть ни что иное, как решение задачи об эффективном использовании ресурсов.

Критерии эффективности могут быть различны, на этом важном моменте планирования (выборе и обосновании критерия) мы остановимся несколько ниже при рассмотрении конкретных задач.

Введем некоторые понятия и определения.

· Программой работ назовем определенное множество операций (работ), которое нужно выполнить для достижения одной или нескольких целей, причем выполнение работ программы подчинено единому руководящему центру. Можно говорить о программе работ по пусковому комплексу, программе работ участка, строительной организации, проектного института и т.п.

· Однотемной программой работ будем называть программу, состоящую из одного комплекса технологически взаимосвязанных работ, направленных на достижение одной (одноцелевая тема) или нескольких целей (многоцелевая тема).

· Многотемной программой работ будем называть программу, состоящую из нескольких комплексов работ, технологически взаимосвязанных внутри каждого комплекса. Каждый комплекс работ может иметь одну или несколько конечных целей. Работы, принадлежащие разным комплексам, технологически между собой не связаны. Принадлежность тем одной многотемной программе обуславливается единством управляющего центра и общностью резервуара ресурсов.

Рассмотрим сначала различные постановки задач распределения ресурсов для однотемной одноцелевой программы .

Исходя из двух возможных целевых установок при управлении проектом, описанным сетевой моделью, возможны два основных типа постановки задач. Первый тип ориентирован на жесткое соблюдение ограничений по ресурсам, тогда как второй тип предполагает строгое выполнение сроков завершения проекта.

Формулировка первого типа постановки задачи («калибровка»).

При заданных ограничениях в потреблении ресурсов найти такое их распределение с учетом технологической последовательности ведения работ, определенной топологией сетевого графика, которое обеспечивает завершение всей программы за минимальное время.

Формулировка второго типа постановки задачи («сглаживание»).

При соблюдении заданной продолжительности выполнения программы требуется так распределить ресурсы по отдельным работам, чтобы их потребление было оптимальным. Вопрос о выборе критерия оптимальности для этой постановки будет нами рассмотрен специально.

В силу разного механизма удовлетворения потребности в ресурсах их принято разделять на две группы: накапливаемые (складируемые) и ненакапливаемые (нескладируемые). Вторую группу ресурсов часто называют «ресурсы типа мощности».

К первой группе относятся ресурсы, которые по своему характеру допускают накопление с возможностью их последующего использования, например, денежные средства, различные материалы и конструкции и т.п. Ресурсные ограничения в этом случае могут быть заданы интегральной неубывающей функцией, показывающей в каждый момент времени суммарную величину поставок ресурса за весь предшествующий период.

Ко второй группе относятся ресурсы, накопление которых для последующего использования невозможно. Например, ресурсы рабочего и машинного времени. Простой рабочих и механизмов является безвозвратной потерей. Ресурсные ограничения для этой группы задаются функцией наличия ресурса в каждый момент времени.



Copyright © 2024 Женский портал - Екатерина.